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Abstract 
  

Various commonly used Kessler-type parameterizations of the autoconversion of 

cloud droplets to embryonic raindrops are theoretically derived from the same formalism 

by applying the generalized mean value theorem for integrals to the general collection 

equation. The new formalism clearly reveals the approximations that are implicitly 

assumed in these different parameterizations. It is shown that the different 

parameterizations can be generalized into a common expression, and that their 

differences lie in the characterization of the effect of the spectral dispersion of the cloud 

droplet size distribution on the autoconversion rate. A new Kessler-type parameterization 

is derived from the formalism. This new parameterization eliminates the incorrect and/or 

unnecessary assumptions inherent in the existing ones, exhibits a different dependence on 

liquid water content and droplet concentration, and provides theoretical explanations for 

the multitude of values assigned to the tunable coefficients associated with the commonly 

used parameterizations. Relative dispersion of the cloud droplet size distribution is 

explicitly included in the new parameterization, allowing for investigation of the 

influences of the spectral dispersion on the autoconversion rate, and hence on the second 

indirect aerosol effect.  

Key words: autoconversion rate, generalized mean value theorem for integration, 

cloud liquid water content, droplet concentration, relative dispersion.   
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1. Introduction 

Rain is initiated in liquid water clouds by collision and coalescence of cloud 

droplets wherein larger droplets with higher settling velocities collect smaller droplets 

and become embryonic raindrops. This so-called autoconversion process is usually the 

dominant process that leads to the formation of drizzle in stratiform clouds. Accurate 

parameterization of the autoconversion process in atmospheric models of various scales 

(from cloud-resolving models to global climate model) is important for understanding the 

interactions between cloud microphysics and cloud dynamics (Chen and Cotton 1987), 

for the forecasting of the freezing drizzle formation and aircraft icing (Rasmussen et al. 

2002), and for improving the treatment of clouds in climate models (Rotstayn 2000).  

Kessler (1969) proposed a simple parameterization that linearly relates the 

autoconversion rate to the cloud liquid water content, and this parameterization has been 

widely used in cloud-related modeling studies because of its simplicity. But this simple 

parameterization leaves much to be desired, as it is well known that the autoconversion 

rate is a function of not only of the liquid water content, but also the cloud droplet 

number concentration and the spectral dispersion of the cloud droplet size distribution. 

Over the last several decades, much effort has been devoted to improving the original 

Kessler parameterization by including the effect of the droplet concentration as well as 

liquid water content (Manton and Cotton 1977; Tripion and Cotton 1980; Liou and Ou 

1989; Baker 1993). The effort to improve parameterization of the autoconversion rate has 

been recently reinforced by an increasing interest in cloud-climate interactions, and 
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particularly in studies of the second indirect aerosol effect (Boucher et al. 1995; Lohmann 

and Fleichter 1997; Rotstayn 2000).  

Without loss of generality, all of the Kessler-type parameterizations can be 

written as 

                  ( )cP cLH y y= − ,                                                              (1) 

where P is the autoconversion rate in g cm-3 s-1, c is an empirical coefficient in unit of s-1 

(hereafter conversion coefficient), and L is the cloud liquid water content in g cm-3. The 

Heaviside step function H(y-yc) is introduced to describe a threshold yc (hereafter 

threshold coefficient) below which the autoconversion is negligibly small. The meaning 

of y is different in different parameterizations; for example, y represents the cloud liquid 

water content in the original Kessler parameterization, whereas it represents the mean 

volume radius in the Manton and Cotton expression, and the mean radius of the fourth 

moment in the parameterizations of Liou and Ou (1989), Baker (1993) and Boucher et al 

(1995). It is noteworthy that while the autoconversion rate is also formulated in terms of 

the cloud water mixing ratio instead of the liquid water content, transformation between 

these two equivalent  formulations is straightforward.  

A common problem with the Kessler-type parameterizations is that they 

collectively lack a solid theoretical foundation, approximations associated with their use 

are not clear, and the logical connections between the various Kessler-type 

parameterizations are not well understood. Here we first derive the various existing 

Kessler-type parameterizations by applying the generalized mean value theorem to the 

general collection equation. This derivation readily reveals the distinctions between, and 

approximations of these different parameterizations. The existing Kessler-type 
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parameterizations are then generalized into a unified expression that includes the effect of 

the spectral dispersion of the cloud droplet size distribution as well as the droplet 

concentration and liquid water content. A new Kessler-type parameterization that 

eliminates the incorrect and/or unnecessary assumptions inherent in the existing 

parameterizations is further developed, and applied to explain the multitude of the 

empirical coefficients associated with the existing Kessler-type parameterizations. The 

effect of the spectral dispersion on the autoconversion rate is also discussed.  

2. Reexamination of Typical Kessler-Type Parameterizations  

 As discussed above, one of the problems shared by the existing Kessler-type 

parameterizations is the lack of a physical basis for their formulation. The purpose of this 

section is to show that application of the generalized mean value theorem for integrals to 

the general equation for the autoconversion rate can provide the required theory.  

a. Autoconversion rate and Generalized mean value theorem for integrals 

We first recapitulate the expression for the autoconversion rate and the 

generalized mean value theorem for integrals that will be used in this work.  From the 

continuous collection equation, the mass growth rate of a collector drop of radius R 

falling through a population of smaller droplets having a cloud droplet size distribution 

n(r) is given by (Pruppacher and Klett 1997) 

                ( )( )
( , ) ( )

dm R
K R r m r n r dr

dt
= ∫                                                     (2) 

The autoconversion rate P is obtained by further integrating (2) over all collector drops: 

                ( ) ( ) ( )( , ) ( )
dm

P n R dR n R dR K R r m r n r dr
dt

= =∫ ∫ ∫                     (3) 
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The interval of the integration is from the smallest cloud droplets to the smallest raindrop, 

and is omitted throughout the paper for simplicity. It is well known from standard 

calculus textbooks (e.g., Spiegel 1992) that, if f(x) and g(x) are continuous in the interval 

x ∈ [a, b], and g(x) does not change sign in this interval, then there is a point xξ ∈ (a, b) 

such that   

( ) ( ) ( ) ( )
b b

a a

f x g x dx f x g x dxξ=∫ ∫ .                                              (4) 

It will be shown below that the application of the generalized mean value theorem 

for integrals to (3) provides a unified basis for the various Kessler-type 

parameterizations. 

b. Derivation of the typical Kessler-type parameterization  

Kessler (1969) intuitively proposed an expression for the autoconversion rate such 

that  

( )K K cP a L L= − ,                                                                             (5a) 

where Lc is the threshold liquid water content below which the autoconversion rate is 

assumed to be so small that the empirical coefficient ak = 0 when L � Lc, and ak > 0 when 

L > Lc. This parameterization can also be expressed through the Heaviside step function, 

i.e.,  

( )K K cP c LH L L= −                                                                       (5b) 

Comparison of (5b) with (5a) yields 

                        1 c
K K

L
c a

L
 = − 
 

,                                                                         (5c) 
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Equation (5c) provides an explanation for the results obtained by Kessler (1969) that 

increasing ak affects precipitation development in much the same way as does increasing 

the conversion threshold, because the autoconversion rate increases when ak increases or 

the threshold liquid water content decreases for a given liquid water content. 

The Kessler parameterization can also be derived by applying the generalized 

mean value theorem for integrals to (3) as follows. Application of the generalized mean 

value theorem to the first integral of (3) yields 

 ( ) ( ) ( )( , ) ( ) ( , )K KP K R r n R dR m r n r dr L K R r n R dR= =∫ ∫ ∫                (6) 

where rK is  between the smallest cloud droplet and the smallest raindrop. Further 

application of the generalized mean value theorem to (6) yields  

( , )K K KP K R r NL c L= = ,                                                               (7) 

where RK is between the smallest droplet and the smallest raindrop, N is the total number 

concentration of cloud droplets, and K(RK,  rK) represents the "average" collection kernel. 

Equation (7) becomes the Kessler parameterization if the conversion rate satisfies (5c). 

The above derivation clearly shows that the original Kessler parameterization with 

constant values of ak and Lc results from the assumption of an "average", fixed collection 

kernel that is independent of droplet radius and proportional to the quantity given by (1-

Lc/L)N-1. These assumptions are clearly not valid. 

Manton and Cotton (1977, see also Tripoli and Cotton 1980) formulated a similar 

expression for the autoconversion rate, 

( )MC MC cP c LH L L= − .                                                   (8) 

Unlike the original Kessler parameterization, however, the conversion coefficient was 

further expressed as 
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                         ( )2
3 3MC MCc E R V R Nπ= ,                                                          (9) 

 where EMC represents an average collection efficiency associated with the 

autoconversion process, R3 is the mean volume radius, and V is the terminal velocity of a 

droplet of radius R3.  They also argued that the threshold of the autoconversion process 

was determined by the mean volume radius instead of by the liquid water content such 

that                                              

 3
3

4
3

w
c cL R N

πρ
= ,                                                           (10) 

where R3c is the threshold mean volume radius, and ρw is the density of water. Manton 

and Cotton used EMC = 0.55, and R3c = 10 µm. 

The Manton and Cotton expression can also be derived by applying the mean 

value theorem to the collection equation, but in a slightly different way than for the 

original Kessler parameterization. The collection kernel K (R, r) depends generally on the 

collection efficiency E and the terminal velocity V, and is given by 

              ( ) ( ) ( ) ( ) ( )2, ,K R r E R r R r V R V rπ= + −                                            (11) 

Because cloud droplets are so small, this equation can be simplified by assuming that 

                               ( )2 2R r R+ ≈ ,                                                                        (12a) 

and                        ( ) ( ) ( )V R V r V R− ≈                                                               (12b) 

Substitution of (12a), (12b) and (11) into (3) yields 

                       ( ) ( ) ( )2 ( , ) ( )P R V R n R dR E R r m r n r drπ= ∫ ∫                                 (13) 

Application of the generalized mean-value theorem to the first integral of (13) yields                               

( ) ( ) ( )2 , MCP L R V R n R E R r dRπ= ∫                                               (14) 
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Further application of the generalized mean-value theorem to (14) yields 

( ) ( ) ( )2 2
MC MC MC MC MC MCP LR V R E n R dR E R V R NLπ π= =∫                         (15) 

Comparison of (15) to (8) and (9) shows that (15) reduces to the Manton and Cotton 

parameterization under the assumption of RMC = R3. This assumption is invalid except in 

the case of a monodisperse cloud droplet size distribution.  

The familiar form of the Manton and Cotton parameterization can be derived by 

assuming that the terminal velocity of the drop R is well described by the Stokes law  

                                   ( ) 2
1V R Rκ= ,                                                                  (16) 

where κ1 = 1.19 x 106 cm-1s-1 is the Stokes constant.  Substitution of (16) into (15) yields 

        4
1 3MC MCP E R NLπκ=                                                              (17a) 

Substitution into (17a) of the expression relating the mean volume radius to the liquid 

water content and droplet concentration yields the familiar form of the Manton and 

Cotton parameterization, 

1/3 7/3
3 3( )MC MC cP N L H R Rα −= − ,                                       (17b)                                                     

where the parameter 
4/3

1

3
4MC MC

w

Eα πκ
πρ

 
=  

 
                                                  (17c) 

The Heaviside function H(R3 -R3c) is introduced to consider the threshold process such 

that the autoconversion rate is negligibly small when R3 < R3c.  

A major improvement of the Manton and Cotton parameterization over the 

original Kessler parameterization is inclusion of the droplet concentration as a dependent 

variable in formulation of the autoconversion rate, which enables one to differentiate 

between air mass types. Another improvement is that the threshold is determined by the 

volume mean radius rather than the liquid water content; this change makes physical 
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sense because a cloud with a large liquid water content, a large number of droplets and 

therefore a small mean volume radius will not rain. It is evident from the above 

derivation that these improvements result from relaxing the assumption of a fixed the 

collection kernel (independent of the droplet radius) inherent in the original Kessler 

parameterization. The derivation also exposes the following deficiencies remaining in the 

Manton and Cotton parameterization: fixed collection efficiency, terminal velocity and 

RMC = R3.  

  Several parameterizations that are slightly different from the Manton and Cotton 

parameterization have been subsequently proposed. Instead of applying the mean-value 

theorem to the integral of (14) before substituting the Stokes law for the terminal 

velocity, Liou and Ou (1989) relaxed the assumption of fixed terminal velocity by first 

applying the Stokes law for the terminal velocity, and obtained the autoconversion rate 

                    ( ) ( )4
1 , MCP L E R r R n R dRπκ= ∫                                                             (18) 

A subsequent application of the generalized mean-value theorem to (18) yields 

                    ( )4 4
1 4 1 4 4LOP E L R n R dR E R NLπκ πκ= =∫                                              (19) 

where E4 is the average collection efficiency associated with (18), and R4 is the mean 

radius of the fourth moment defined as  

                        
( )

1 / 4
4

4

R n R dR
R

N

 
 =
 
 

∫                                                                     (20) 

They assumed a fixed linear relation between R4 and the mean square radius R2, R4 = 

1.247 R2, and investigated sensitivities of cloud radiative properties to the mean square 

radius.  



  

 11

In investigation of the behavior of cloud condensation nuclei in the marine cloud-

topped boundary layer, Baker (1993) used a similar parameterization, but assumed R4 is 

equal to the mean volume radius such that  

4/3

1/3 7/3
ker 1 4 3 3

3
( )

4Ba c
w

P E N L H R Rπκ γ
πρ

− 
= − 

 
,                                             (21) 

where ELO = 0.55, R3c = 10 µm, and the empirical multiplier γ, which varies from 0.01 

and 0.1, was introduced to make the autoconversion rate smaller. In their GCM study, 

Boucher et al. (1995) assumed a fixed linear relation between R4 and the mean volume 

radius, 4 31.1R R= , and obtained a autoconversion parameterization given by 

                      ( )1/3 7/3
4 4Boucher B cP N L H R Rα −= −  ,                                                (22a) 

                   
4/3

4
1 4

3
(1.1)

4B
w

Eα πκ γ
πρ

 
=  

 
                                                          (22b). 

They also studied the sensitivity to the value of the threshold radius. Note that unlike 

Baker (1993), they found that the a value of γ = 1 generated more reasonable results. A 

value of E4 = 0.55 was also used in this study.    

3. New Parameterizations  

a. Generalized R4 parameterization 

Compared to the Manton-Cotton parameterization, one of the features shared by 

the Baker and the Boucher parameterizations is that the mean volume radius R3 in the 

Manton-Cotton parameterization is replaced by the mean radius of the fourth moment R4 

in both the conversion and the threshold coefficients. Values of the two average 

collection efficiencies, EMC and E4, may differ to some degree. These differences arise 

because the Baker and Boucher parameterizations eliminate the assumption of fixed 
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terminal velocity. Furthermore, as will become evident later, the linear relation between 

R4 and R3 assumed in the Baker and Boucher parameterizations is easier to physically 

justify than the assumption of RMC = R3 in the Manton and Cotton parameterization. 

However, the differences between the three parameterizations are minimal in practice, 

because the α  parameters (αMC, αBaker, and αBoucher), and the threshold radii are arbitrarily 

tuned in most modeling studies. For this reason, the three parameterizations will hereafter 

be lumped together, and referred to as the traditional R4 parameterizations to emphasize 

the important role of the fourth moment [see Eq. (19)]. 

 The Baker and Boucher parameterizations can be generalized into a common 

expression by assuming a general linear relation between the mean volume radius and the 

mean radius of the fourth moment such that  

   4 4 3R Rβ= ,                                                              (23) 

where β4 is a nondimentional parameter depending on the spectral shape of the cloud 

droplet size distribution. Application of this expression gives the generalized R4 

parameterization 

                                               1/3 7/3
4 4P N Lα −=  ,                                                     (24a) 

                                      
4/3

4
4 1 4 4

3
4 w

Eα πκ β
πρ

 
=  

 
.                                               (24b) 

The differences between the three traditional R4 parameterizations become evident from 

the above equations. The Baker parameterization is a special case of the generalized R4 

parameterization with β4 = 1. In practice, the Manton and Cotton parameterization can 

also be considered a special case with β4 = 1. As will be shown below, β4 is an increasing 

function of the relative dispersion of the cloud droplet size distribution, a common 
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measure of the spectral shape defined as the ratio of the standard deviation to the mean 

radius of the cloud droplet size distribution. A value of β4 = 1 is equivalent to assuming a 

monodisperse cloud droplet size distribution. The Boucher parameterization corresponds 

to a special case of β4 = 1.1, suggesting the assumption of a larger, yet fixed spectral 

dispersion for the cloud droplet size distribution. Therefore, the primary differences 

between the traditional R4 parameterizations reflect their different choices for the relative 

dispersion of the cloud droplet size distribution. Obviously, the assumption of fixed 

spectral dispersion, monodisperse or not, is troublesome. In fact, the effect of the spectral 

dispersion can be explicitly investigated if we assume that the cloud droplet size 

distribution can be well described the gamma distribution. Under this condition, β4 is 

easily shown to be uniquely related to the spectral dispersion of the cloud droplet size 

distribution by, 

( )
( ) ( )

1 / 42

4 1/12
2 2

1 3

1 2 1

ε
β

ε ε

+
=

 + + 

 ,                                                 (25) 

where ε represents the relative dispersion. 

b. A New R6 parameterization 

Although the various R4 parameterizations are significant improvements of the 

original Kessler parameterization, they still suffer from the implicit deficiency that the 

collection efficiency is treated as a constant. This assumption is obviously incorrect 

because it means collections between droplets of nearly the same size are just as 

numerous as those between droplets of very different sizes. Baker (1993) discussed this 

deficiency, and introduced a multiplicative parameter γ ranging from 0.01 to 0.1 to adjust 
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for this effect. Here we develop a new parameterization that does not assume a fixed 

collection efficiency.  

Long (1974) showed that the collection kernel can be well approximated by 

                              ( ) 6
2,K R r Rκ= ,                                                                           (26) 

where the coefficient 11
2 1.9 10κ ≈ ×  in cm-3s-1,  R is in cm, and the collection kernel K is 

in cm3 s-1. Substitution of (26) into (3) yields 

          ( )6 6
6 2 2 6P L R n R dR NR Lκ κ= =∫ ,                                                           (27) 

where N is in cm-3, R6 is the mean radius of the sixth moment in cm,  L is in g cm-3, and 

P6 is g cm-3s-1. Similar to the generalized R4 parameterization, we assume a general linear 

relation between the mean volume radius and the mean radius of the sixth moment,  

6 6 3R Rβ= . This relation leads to the following expressions 

                         ( )1 3
6 6 6cP N L H R Rη −= − ,                                                          (28a) 

2

6
2 6

3
4 w

η κ β
πρ

 
=  

 
                                                                    (28b) 

 It is clear from the above equations that the autoconversion rate of this new 

parameterization exhibits a different dependence on the liquid water content and droplet 

concentration than the R4 parameterizations. It also suggests that the threshold is 

determined by the mean radius of the sixth moment rather than the mean radius of the 

fourth moment. The new parameterization also exhibits different dependence on the 

relative dispersion than the generalized R4 parameterization. For the purpose of 

comparison, the new R6 parameterization can also be rewritten in the forms of the original 

Kessler and the R4 parameterizations such that    
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       ( ) ( )1 3 7 3
6 6 6 6 6 6 6c cP c LH R R N L H R Rα −= − = − ,                                     (29a) 

           
2 2/3

6
6 2 6

3
4 w

L
N

α κ β
πρ

   =    
  

,                                           (29b) 

1/3 4/3
6 6N Lc α −= .                                                                        (29c) 

 Again, under the assumption that the cloud droplet size distribution can be well 

described the gamma distribution, the relationship between β6 and the relative dispersion 

(ε) is easily shown to be  

( )( ) ( )
( ) ( )

1 / 6
2 2 2

6 2 2

1 3 1 4 1 5

1 1 2

ε ε ε
β

ε ε

 + + +
 =

+ +  
  .                                             (30)  

 The above equations suggests a different dependence of the conversion coefficient 

than the R4 parameterizations. Furthermore, the new R6 parameterization indicates that 

the α coefficient in the R4 parameterizations should also be a function of the liquid water 

content, droplet concentration and relative dispersion instead of a constant as assumed in 

the traditional R4 parameterizations. This dependence provides a plausible explanation 

for the wide range of α (or γ) values that have been assigned by investigators in use of the 

traditional R4 parameterizations.  

4. Discussion 

To facilitate comparison, all the Kessler-type parameterizations discussed above 

are summarized in Table 1 in the forms of the Kessler parameterization and the R4 

parameterization because of their widespread use.  Also given in the table are the major 

approximations and assumptions associated with these parameterizations as revealed by 

the common derivation process. It is clear from this table that the conversion coefficients 

in all of the R4 parameterizations exhibit the same dependence on cloud liquid water 
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content and droplet concentration; the dependence of the new R6 parameterization on the 

liquid water content and droplet concentration is considerably different than for the R4 

parameterization. Both the new R4 and R6 parameterizations also have a conversion 

coefficient that depends on the relative dispersion as well, although the details of this 

dependency are quantitatively different in the two parameterizations.  

Examination of our new R6 parameterization also provides an explanation for a 

number of long-standing issues associated with the original Kessler parameterization as 

well as the various R4 parameterizations. For example, such a wide range of values have 

been assigned to the coefficient ak in studies using the original Kessler parameterization 

that in practice, it has been often considered to be arbitrarily tunable (e.g., Kessler 1969; 

Liu and Orville 1969; Ghosh et al. 2000). It is evident from the new R6 parameterization 

that the wide range of values assumed for ak may stem from the variabilities in the liquid 

water content, droplet concentration and relative dispersion that are not properly 

accounted for in the original Kessler parameterization. Similar to the arbitrary tunability 

of the coefficient a in the original Kessler parameterization, a wide range of values have 

been also assigned to the α coefficient in modeling studies using the traditional R4 

parameterizations (Baker 1993; Boucher et al. 1995). For example, the range of γ from 

0.01 to 1 as suggested by Baker (1993) and Boucher et al. (1995) alone leads to a 

difference of three orders of magnitude in α . The new R6 parameterization again shows 

that the multitude of values that have been assigned to α may be due to the combined 

variabilities in liquid water content, droplet concentration and relative dispersion.  

Furthermore, both the generalized R4 parameterization and the new R6 

parameterization explicitly account for the effect of the spectral shape through the 
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dependency of β4 and β6 on the relative dispersion [Eq. (25) for β4 and Eq. (30) for β6].  

This is a desirable feature because the effect of spectral shape on the autoconversion rate 

is not well understood and quantified despite the fact that it is well known that the 

relative dispersion has an important role in the autoconversion process. In particular, 

none of the previous Kessler-type parameterizations includes the relative dispersion as a 

dependent variable.  

However, the dependency of the autoconversion rate on the relative dispersion are 

quantitatively different for the new R4 and R6 parameterizations. Figure 1 shows β4
4 and 

β6
6 as a function of the relative dispersion. Two points can be drawn from this figure. 

First, as expected, both β4 and β6 (therefore the autoconversion rate) increases with 

increasing broadness of the cloud droplet size distribution. Second, compared to our new 

R6 parameterization, the generalized R4 parameterization underestimates the effect of 

spectral dispersion on the autoconversion rate by up to an order of magnitude.  

The relative dispersion of the cloud droplet size distribution also influences on the 

autoconversion rate by affecting the threshold radius.  This effect is illustrated in Fig. 2, 

which shows β4 and β6 as a function of the relative dispersion. Since the threshold radius 

for the generalized R4 parameterization and the new R6 parameterization are respectively 

R4 = β4 R3 and R6 = β4 R3, both parameterizations tend to have threshold radii larger than 

the threshold mean volume radius used in the Manton and Cotton parameterization and 

the Baker parameterization. For the generalized R4 parameterization, the underestimation 

by the mean volume radius can reach a factor of 1.4. For the new R6 parameterization, the 

underestimation can be larger than a factor of 2. The difference between the generalized 

R4 parameterization and the new R6 parameterization can also reach a factor of 1.5.  
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These results suggest that the effect of the spectral dispersion alone could cause an 

uncertainty of up to a factor 2 in the threshold radius. According to few limited studies 

(Boucher et al. 1995), differences of this magnitude are large enough to significantly 

affect the results of GCM simulations. We have recently shown that the relative 

dispersion significantly affects cloud radiative properties (Liu and Daum 2000) as well as 

the evaluation of the Twomey effect (Liu and Daum 2002; Rotstayn et al. 2003). These 

dispersion-dependent parameterizations can also be coupled with the corresponding 

relationship between the relative dispersion and pre-cloud aerosol properties (Liu and 

Daum 2002) to address the influence of the relative dispersion on the second indirect 

aerosol effect.   

5. Concluding Remarks 

The typical autoconversion parameterizations of the Kessler type that have been 

widely used in cloud-related modeling studies are theoretically derived and analyzed by 

applying the generalized mean value theorem for integrals to the general collection 

equation. The approximations implicitly assumed in these parameterizations, their logical 

connections and the improvements are revealed by the derivations. It is shown that the 

original Kessler parameterization implicitly assumes a fixed collection kernel. The 

Manton and Cotton parameterization improves the original Kessler parameterization by 

relaxing the assumptions of a fixed collection kernel to a fixed collection efficiency and 

fixed terminal velocity. The Baker and Boucher parameterizations physically improve the 

Manton and Cotton parameterization by eliminating the assumption of a fixed terminal 

velocity. It is also demonstrated that the Manton and Cotton parameterization, the Baker 

parameterization and the Boucher parameterization can actually be considered special 



  

 19

cases of a generalized R4 parameterization that assume different, yet fixed values of the 

relative dispersion. 

A new R6 parameterization is derived by further eliminating the assumption of a 

fixed collection efficiency inherent in the various R4 parameterizations. The new 

parameterization relates the autoconversion rate to the sixth moment of the cloud droplet 

size distribution, and represents the physics of the autoconversion process better than 

those that have been commonly used. Furthermore, the new parameterization indicates 

that the wide range of values chosen for both the a coefficient in the original Kessler 

parameterization and the α coefficient in the traditional R4 parameterizations are in fact 

mainly due to the variabilities in cloud liquid water content, droplet concentration and 

relative dispersion in ambient clouds. The practice of arbitrarily tuning coefficients (a and 

α in the original Kessler parameterization and the R4 parameterizations) to match some 

constraints in modeling studies is therefore misleading; critical information is lost in the 

tuning process. 

In comparison with the commonly used parameterizations (traditional R4 

parameterizations and the original Kessler-type parameterization), the generalized R4 

parameterization and the new R6 parameterization have an additional advantage because 

they can be used to study the effect of the relative dispersion on the autoconversion rate. 

Our preliminary analysis indicates that the effect of the relative dispersion is too large to 

be ignored in the parameterization of the autoconversion process.  

It is noteworthy that several parameterizations have been also developed by 

curve-fitting the autoconversion rate calculated from detailed microphysical models 

(Berry 1968; Behgeng 1994; Kogan 2000). They are in general agreement with the new 
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R6 parameterization, suggesting a stronger dependence of the autoconversion rate on the 

liquid water content and droplet concentration than that given by either the original 

Kessler parameterization or the various R4 parameterizations. Detailed comparison of the 

new R6 parameterization with these model-based parameterizations will be presented in 

Part II of this series.    
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Figure Caption 

Figure 1. Dependence of β6
6 (solid line) and β4

4 (dashed line) on the relative dispersion.  

Figure 2. Dependence of β6
 (solid line) and β4

 (dashed line) on the relative dispersion.  
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Table 1. Summary of the Kessler-Type Autoconversion Parameterizations  
                                   1/3 7 /3( ) ( )c cN LP cLH y y H y yα −== − −  

Parameterizations Assumptions Conversion Coefficient c Threshold yc 

Kessler  fixed collection kernel 
1K K

ca
L

c
L

=  − 
 

 
Lc 

Manton & Cotton Fixed collection efficiency, 

monodisperse spectrum & 

fixed terminal velocity  

1/3 4 /3
MC MC N Lc α −=  

4/3

1

3
4MC MC

w

Eα πκ
πρ

 
=  

 
 

R3c 

Baker Fixed collection efficiency 

& monodisperse spectrum 

1/3 4 /3
ker kerBa Ba N Lc α −=  

4/3

ker 1 4

3
4Ba

w

Eα πκ
πρ

 
=  

 
 

R3c 

Boucher Fixed collection efficiency 

& fixed, broader spectrum 

1/3 4 /3
Boucher Boucher N Lc α −=  

( )4

4/3

1 4 1.1
3

4Boucher
w

Eα πκ
πρ

 
=  

 
 

R4c 

Generalized R4  Fixed collection efficiency 1/3 4 /3
4 4 N Lc α −=  

4/3

4
4 1 4 4

3
4 w

Eα πκ β
πρ

 
=  

 
 

R4c 

New R6 None of above 1/3 4 /3
6 6 N Lc α −=  

2 2/3
4

6 2 4

3
4 w

L
N

α κ β
πρ

   =    
  

 

 R6c 
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Fig. 1. 
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Fig. 2 
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